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On the breaking of water waves of finite amplitude 
on a sloping beach 

By H. P. GREENSPAN 
Pierce Hall, Harvard University 
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SUMMARY 
In  a recent paper Carrier & Greenspan (1958) showed that, 

within the framework of the non-linear shallow-water theory, there 
exist waves which do not break as they climb a sloping beach. The 
formation of a shock or bore is dependent on a variety of factors 
(wave shape, particle velocity, etc.) and, as yet, no general criteria 
for breaking have been found. In this paper, we consider waves 
which propagate shoreward into quiescent water ; it is shown that 
any compressive wave (a wave of positive amplitude) which has 
a non-zero slope at the wave-front eventually breaks before reaching 
the coastline. In fact, an explicit relation is obtained between the 
initial conditions and the position where breaking occurs. 

The conservation equations of mass and momentum of the non-linear 
shallow-water theory are 

[V"(V" +h+)lz+ = - rlt" 9 ( 1 )  
and v; + v+v;* = -g"$*, (2) 
where the symbols q", h", and XI are defined in figure 1 ,  v* is velocity, 
t" is time, and g" is the gravitational acceleration. The asterisks denote 
dimensional quantities. Let the depth be given by 

h" = K(Z$ -x"), 

Figure 1 .  Fluid with a fixed boundary and a free surface. 

and let x = x"/l{, = rf/a@, v = v*/v:, t = t"/t$, where t: = (Zt/o(g+)1/* 
and v$ = (ag+Zt)1'2. With the substitution of these dimensionless variables 
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the basic equations become 
[v ( l  - x + v11.C = - vt, (3 1 

and v,+vv, = - T x .  (4) 
These hyperbolic equations can be rewritten in a form in which the 

characteristics u, /3 play the role of independent variables and v ,  x, t and 
the wave velocity c = (1 - x+7)lI2 are unknown functions of u, p. The 
characteristic equations which arise are 

xg = (v + C)t,, (5) 
( 6 )  

x, = (v-c)t,, (7) 
and ( v -2c+t ) ,  = 0. (8) 

(v + 2c + t )@ = 0, 

The reader is referred to Stoker (1948) for a complete derivation of these 
equations. Two families of characteristics are described. The quantity 
v +- 2c + t is constant along any characteristic u = const. which propagates 
shoreward; the slope of this characteristic at any point (x, t )  on it is 
dxjdt = v + c. The quantity v - 2c + t is constant along any characteristic 
,8 = const. propagating seaward ; the slope of the characteristic at any 
point on it is dx/dt = v-c .  

Consider, then, waves which are propagating shoreward into quiescent 
water, and which at time t = 0 are given by q = 0 for 0 < x < 1, and 
7 = f(x) for x < 0, where f(x) is a known function and f(0) = 0. The 
characteristic forming the wave-front can be determined explicitly. Since 
the wave is propagating into a region of rest, the particle velocity v is 
identically zero at any point on this characteristic. Therefore the slope 
of this curve is given by dxjdt = c. The quantity v+2c+t is constant 
along this characteristic so that v + 2c + t = 2c + t = 2, since c = 1 at x = 0 
and t = 0. This implies that the wave-front characteristic is the curve given 
by dxjdt = 1 - i t ,  with x = 0 at t = 0 ; that is, the branch of the parabola 
x = t - k t 2  for which t < 2. 

The wave velocity at the wave-front is 

(9 ) c = ( 1  - x y  = 1 - +t. 

At zero time the wave-front is located at the origin of the coordinate system 
fixed in the fluid. At a subsequent time t the wave-front has moved a 

distance 1 c dt = t - i t 2  from the fixed coordinate system. If 5 measures 

distances from the moving wave-front (see figure 2) ,  then 

t 

0 

t 
x =  <+ I n c-dt = <+t-$t*. (10) 

The origin of the new coordinate-( is the position of the wave-front. 
now introduce (10)  into the basic equations (3)  and (4), we find that 

If we 

[.(1-5- t + $t2+v)Ir = -qt+ (1 - * t )Tf  
= U g ( l  - 5 - t + i t 2 +  7) + u( - 1 + qc) ,  (1 1) 

(12) and 
In the moving coordinate system, 

U t  - (1 - +t)u, + uup = - T6.  
= 0, qtl = 0, ul = 0 and utl = 0 at f = 0. 
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i f  we set ( = 0 in equations (1 1) and (12), we obtain the result 

7, = (1 - &)u, 

q@ = utt( 1 - i t )  - hug 

agt(l - $)-2u,  +3(1- $)u: = -vrt 

at f = 0. (13 1 

(14) 

(15) 

( l -+t )u ,=  Qur-3(1-&t)u: at f = 0. (16) 

(17) 

By differentiating (11) and (12) with respect to t ,  we find that 

Similarly, by differentiating with respect to E ,  we find that 

By eliminating qa from (15) by means of (14), there results an equation 
for u,(O, t )  alone : 

The corresponding equation for qr(O,  t )  is 

at 5 = 0. 

at E = 0. 

1 2  (1 - +t).ip = $7, - HV*. 

I 
h 

Figure 2. Location of the coordinate system fixed with respect to the wave-front. 

Thus, if q r ( O , O )  < 0, the wave is compressive at the wave-front, and 
qgt(O, 0) < 0 or the wave-front steepens. If the wave is initially compressive, 
with anon-zero slope at the wave-front, the wave-front steepens as it advances 
on the shoreline. On the other hand if qt(O,O) = 0, then qJ0, t )  = 0 
for all subsequent times. Such waves cannot begin to break or form a 
bore at the wave-front. indeed, they may or may not break at some interior 
point. if we consider rarefaction waves for which 0 < q E ( O , O )  < $, we 
find that such waves actually steepen at the wave-front in contrast to rare- 
faction waves on a constant depth ocean, which always flatten out. A wave 
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for which q e ( O , O )  = 4 continues to  propagate shoreward with this slope 
at the wave-front. Waves for which q r ( O , O )  > flatten out as they advance, 
and the slope at the wave-front approaches g .  

Figure 3. Breaking time as a function of initial slope. 

Figure 4. Breaking position as a function of initial slope. 

Equations (16) and (17) are non-linear first-order differential equations 
for the functions u ( ( 0 , t )  and r / ( ( O , t )  with the boundary conditions that 
uf(O,O) and ' f r ( O , O )  are specified. The  solutions of these differential 
equations are 

u,(o, t )  = 1/{(2 - t)[i - ~ 1 / y i  - 9 t ) 3 q ,  (18) 

and r / f ( ~ ,  t )  = 1 / ( 2 [ 1 - - ~ 1 y i  - 4 t ) 3 / 2 3 ) ,  (19) 
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where 

If q((0,O) = - m where m > 0, then A is larger than one. A wave satisfying 
this condition breaks when the slope at the wave-front becomes infinite. 
From (19) it is seen that this occurs when 

or equivalently at x = t - at2 < 1. 
Therefore waves which are compressive in the region adjacent to the 

wave-front and propagate shoreward with a discontinuity in slope eventually 
break before reaching the coastline. Values of t and x for which breaking 
occurs are plotted against m in figures 3 and 4. 

Although general criteria for breaking are still lacking, the breaking 
point of a compressive wave with small radius of curvature near the 
wave-front can be accurately predicted. 

This work was sponsored by the Office of Naval Research under 
Contract Nonr 1866(20). 
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